Prithvi Geospatial MAE¶
Source examples/online_serving/prithvi_geospatial_mae.py.
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import base64
import os
import requests
# This example shows how to perform an online inference that generates
# multimodal data. In this specific case this example will take a geotiff
# image as input, process it using the multimodal data processor, and
# perform inference.
# Reuirements :
# - install plugin at:
# https://github.com/christian-pinto/prithvi_io_processor_plugin
# - start vllm in serving mode with the below args
# --model='christian-pinto/Prithvi-EO-2.0-300M-TL-VLLM'
# --task embed --trust-remote-code
# --skip-tokenizer-init --enforce-eager
# --io-processor-plugin prithvi_to_tiff_india
def main():
image_url = "https://huggingface.co/christian-pinto/Prithvi-EO-2.0-300M-TL-VLLM/resolve/main/India_900498_S2Hand.tif" # noqa: E501
server_endpoint = "http://localhost:8000/pooling"
request_payload_url = {
"data": {
"data": image_url,
"data_format": "url",
"image_format": "tiff",
"out_data_format": "b64_json",
},
"priority": 0,
"model": "christian-pinto/Prithvi-EO-2.0-300M-TL-VLLM",
"softmax": False,
}
ret = requests.post(server_endpoint, json=request_payload_url)
print(f"response.status_code: {ret.status_code}")
print(f"response.reason:{ret.reason}")
response = ret.json()
decoded_image = base64.b64decode(response["data"]["data"])
out_path = os.path.join(os.getcwd(), "online_prediction.tiff")
with open(out_path, "wb") as f:
f.write(decoded_image)
if __name__ == "__main__":
main()