vllm.model_executor.models.keye_vl1_5
KeyeVL1_5ImageInputs module-attribute
¶
KeyeVL1_5ImageInputs = Union[
KeyeVL1_5ImagePixelInputs, KeyeVL1_5ImageEmbeddingInputs
]
KeyeVL1_5VideoInputs module-attribute
¶
KeyeVL1_5VideoInputs = Union[
KeyeVL1_5VideoPixelInputs, KeyeVL1_5VideoEmbeddingInputs
]
KeyeVL1_5DummyInputsBuilder ¶
Bases: KeyeBaseDummyInputsBuilder[KeyeVL1_5ProcessingInfo]
Source code in vllm/model_executor/models/keye_vl1_5.py
KeyeVL1_5ForConditionalGeneration ¶
Bases: BaseKeyeModule
, SupportsMultiModal
, SupportsLoRA
, SupportsPP
Source code in vllm/model_executor/models/keye_vl1_5.py
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
|
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/keye_vl1_5.py
_build_projector ¶
_build_projector(
text_config: PretrainedConfig,
vision_config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> Module
Source code in vllm/model_executor/models/keye_vl1_5.py
_parse_and_validate_image_input ¶
_parse_and_validate_image_input(
**kwargs: object,
) -> Optional[KeyeVL1_5ImageInputs]
Source code in vllm/model_executor/models/keye_vl1_5.py
_parse_and_validate_video_input ¶
_parse_and_validate_video_input(
**kwargs: object,
) -> Optional[KeyeVL1_5VideoInputs]
Source code in vllm/model_executor/models/keye_vl1_5.py
_process_video_input ¶
_process_video_input(
video_input: KeyeVL1_5VideoInputs,
) -> tuple[Tensor, ...]
Source code in vllm/model_executor/models/keye_vl1_5.py
_validate_and_reshape_mm_tensor ¶
_validate_and_reshape_mm_tensor(
mm_input: NestedTensors, expected_dim: int, name: str
)
Source code in vllm/model_executor/models/keye_vl1_5.py
KeyeVL1_5ImageEmbeddingInputs ¶
Bases: TensorSchema
Dimensions
- nf: Number of image features
- hs: Hidden size (must match the hidden size of language model backbone)
- ni: Number of images
- g: Grid dimensions (3 for t, h, w)
Source code in vllm/model_executor/models/keye_vl1_5.py
KeyeVL1_5ImagePixelInputs ¶
Bases: TensorSchema
Dimensions
- b: Batch size
- np: Number of patches
- c: Number of channels
- ps: Patch size
- ni: Number of images
- g: Grid dimensions (3 for t, h, w)
Source code in vllm/model_executor/models/keye_vl1_5.py
KeyeVL1_5MultiModalDataParser ¶
Bases: MultiModalDataParser
Source code in vllm/model_executor/models/keye_vl1_5.py
_parse_image_data ¶
_parse_image_data(
data: Union[dict[str, Tensor], ModalityData[ImageItem]],
) -> ModalityDataItems[Any, Any]
Source code in vllm/model_executor/models/keye_vl1_5.py
_parse_video_data ¶
_parse_video_data(
data: Union[dict[str, Tensor], ModalityData[VideoItem]],
) -> ModalityDataItems[Any, Any]
Source code in vllm/model_executor/models/keye_vl1_5.py
KeyeVL1_5MultiModalProcessor ¶
Bases: BaseMultiModalProcessor[KeyeVL1_5ProcessingInfo]
Source code in vllm/model_executor/models/keye_vl1_5.py
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
|
_get_data_parser ¶
_get_data_parser() -> MultiModalDataParser
_get_mm_fields_config ¶
_get_prompt_updates ¶
_get_prompt_updates(
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, Any],
out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]
Source code in vllm/model_executor/models/keye_vl1_5.py
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
|
KeyeVL1_5ProcessingInfo ¶
Bases: KeyeProcessingInfo
Source code in vllm/model_executor/models/keye_vl1_5.py
KeyeVL1_5Projector ¶
Bases: Module
Source code in vllm/model_executor/models/keye_vl1_5.py
hidden_size instance-attribute
¶
linear_1 instance-attribute
¶
linear_1 = ColumnParallelLinear(
hidden_size,
hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.linear_1",
)
linear_2 instance-attribute
¶
linear_2 = RowParallelLinear(
hidden_size,
hidden_size,
bias=True,
quant_config=quant_config,
prefix=f"{prefix}.linear_2",
)
__init__ ¶
__init__(
text_config: PretrainedConfig,
vision_config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/keye_vl1_5.py
forward ¶
forward(
image_features: Union[
Tensor, tuple[Tensor], list[Tensor]
],
image_grid_thw: list[tuple[int, int, int]],
) -> Union[Tensor, list[Tensor]]
Source code in vllm/model_executor/models/keye_vl1_5.py
KeyeVL1_5VideoEmbeddingInputs ¶
Bases: TensorSchema
Dimensions
- nf: Number of video features
- hs: Hidden size (must match the hidden size of language model backbone)
- nv: Number of videos
- g: Grid dimensions (3 for t, h, w)
Source code in vllm/model_executor/models/keye_vl1_5.py
KeyeVL1_5VideoPixelInputs ¶
Bases: TensorSchema
Dimensions
- b: Batch size
- np: Number of patches
- c: Number of channels
- ps: Patch size
- ni: Number of images
- g: Grid dimensions (3 for t, h, w)
Source code in vllm/model_executor/models/keye_vl1_5.py
_keye_field_config ¶
Source code in vllm/model_executor/models/keye_vl1_5.py
get_num_patches ¶
Return num_patches per video.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
t | tensor with shape [N, ...] where each item is a list/tensor | required | |
cu_seqlens | list indicating the boundaries of groups | required |
Returns:
Type | Description |
---|---|
list of ints representing the sum of products for each group |
Examples:
>>> # Suppose there are 2 videos with a total of 3 grids
>>> grid_thw = torch.tensor([[2, 2, 2], # grid 0: 2*2*2=8 patches
... [2, 2, 2], # grid 1: 2*2*2=8 patches
... [1, 1, 1]]) # grid 2: 1*1*1=1 patches
>>> num_frames = [2, 1] # The first video contains 2 grids,
the second contains 1 grid.
>>> get_num_patches(grid_thw, num_frames)
tensor([16, 1]) # Total patches for first video: 8+8=16,
second video: 1.
Source code in vllm/model_executor/models/keye_vl1_5.py
split_thw ¶
Split grid_thw in t dimension.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
grid_thw | Tensor | [N, 3] tensor of [t, h, w] | required |
Returns:
Type | Description |
---|---|
Tensor | [Σt, 3] tensor where each row is [1, h, w] |
Example:
grid_thw = torch.tensor([[2, 3, 4], [1, 5, 6]]) split_thw(grid_thw) tensor([[1, 3, 4], [1, 3, 4], [1, 5, 6]])