vllm.model_executor.models.bert_with_rope
BertWithRope ¶
Bases: Module
, SupportsQuant
Source code in vllm/model_executor/models/bert_with_rope.py
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
|
encoder instance-attribute
¶
encoder = BertWithRopeEncoder(
vllm_config=vllm_config,
bias=getattr(config, "bias", True),
rotary_kwargs=rotary_kwargs,
prefix=f"{prefix}.encoder",
)
hf_to_vllm_mapper class-attribute
instance-attribute
¶
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={"model.": ""}
)
__init__ ¶
__init__(
*,
vllm_config: VllmConfig,
prefix: str = "",
add_pooling_layer: bool = False,
)
Source code in vllm/model_executor/models/bert_with_rope.py
forward ¶
forward(
input_ids: Tensor,
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
token_type_ids: Optional[Tensor] = None,
) -> Tensor
Source code in vllm/model_executor/models/bert_with_rope.py
load_weights ¶
Source code in vllm/model_executor/models/bert_with_rope.py
BertWithRopeAttention ¶
Bases: Module
Source code in vllm/model_executor/models/bert_with_rope.py
attn instance-attribute
¶
attn = EncoderOnlyAttention(
num_heads=num_heads,
head_size=head_dim,
scale=scaling,
num_kv_heads=num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
out_proj instance-attribute
¶
out_proj = RowParallelLinear(
input_size=hidden_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.dense",
)
qkv_proj instance-attribute
¶
qkv_proj = QKVParallelLinear(
hidden_size=hidden_size,
head_size=head_dim,
total_num_heads=total_num_heads,
total_num_kv_heads=total_num_kv_heads,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
__init__ ¶
__init__(
hidden_size: int,
num_attention_heads: int,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
bias: bool = True,
rotary_kwargs: Optional[dict] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/bert_with_rope.py
forward ¶
Source code in vllm/model_executor/models/bert_with_rope.py
BertWithRopeBlock ¶
Bases: Module
Source code in vllm/model_executor/models/bert_with_rope.py
attn instance-attribute
¶
attn = BertWithRopeAttention(
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
cache_config=cache_config,
quant_config=quant_config,
bias=bias,
rotary_kwargs=rotary_kwargs,
prefix=f"{prefix}.attention",
)
mlp instance-attribute
¶
mlp = NomicMoE(
num_experts=num_experts,
top_k=moe_top_k,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
hidden_act=hidden_act,
)
__init__ ¶
__init__(
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
moe: bool = False,
bias: bool = True,
rotary_kwargs: Optional[dict] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/bert_with_rope.py
forward ¶
Source code in vllm/model_executor/models/bert_with_rope.py
BertWithRopeEmbedding ¶
Bases: Module
Source code in vllm/model_executor/models/bert_with_rope.py
token_type_embeddings instance-attribute
¶
token_type_embeddings = VocabParallelEmbedding(
type_vocab_size, hidden_size
)
word_embeddings instance-attribute
¶
word_embeddings = VocabParallelEmbedding(
vocab_size, hidden_size
)
__init__ ¶
Source code in vllm/model_executor/models/bert_with_rope.py
forward ¶
Source code in vllm/model_executor/models/bert_with_rope.py
BertWithRopeEncoder ¶
Bases: Module
Source code in vllm/model_executor/models/bert_with_rope.py
layers instance-attribute
¶
layers = ModuleList(
[
(
BertWithRopeBlock(
config=config,
cache_config=cache_config,
quant_config=quant_config,
bias=bias,
moe=every_n > 0
and layer_idx % every_n == 1,
rotary_kwargs=rotary_kwargs,
prefix=f"{prefix}.layer.{layer_idx}",
)
)
for layer_idx in (range(num_hidden_layers))
]
)
__init__ ¶
__init__(
vllm_config: VllmConfig,
bias: bool = True,
rotary_kwargs: Optional[dict] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/bert_with_rope.py
forward ¶
BertWithRopeGatedMLP ¶
Bases: Module
Source code in vllm/model_executor/models/bert_with_rope.py
down_proj instance-attribute
¶
down_proj = RowParallelLinear(
input_size=intermediate_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
gate_up_proj instance-attribute
¶
gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
__init__ ¶
__init__(
hidden_size: int,
intermediate_size: int,
hidden_act: str,
bias: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/bert_with_rope.py
forward ¶
BertWithRopeMLP ¶
Bases: Module
Source code in vllm/model_executor/models/bert_with_rope.py
down_proj instance-attribute
¶
down_proj = RowParallelLinear(
input_size=intermediate_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
up_proj instance-attribute
¶
up_proj = ColumnParallelLinear(
input_size=hidden_size,
output_size=intermediate_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.up_proj",
)
__init__ ¶
__init__(
hidden_size: int,
intermediate_size: int,
hidden_act: str,
bias: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/bert_with_rope.py
forward ¶
Source code in vllm/model_executor/models/bert_with_rope.py
GteNewForSequenceClassification ¶
Bases: Module
, SupportsCrossEncoding
Source code in vllm/model_executor/models/bert_with_rope.py
classifier instance-attribute
¶
classifier = RowParallelLinear(
hidden_size,
num_labels,
input_is_parallel=False,
bias=True,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "classifier"),
return_bias=False,
)
new instance-attribute
¶
new = GteNewModel(
vllm_config=vllm_config,
prefix=prefix,
add_pooling_layer=True,
)
pooler instance-attribute
¶
pooler = DispatchPooler(
{
"encode": for_encode(pooler_config),
"classify": ClassifierPooler(
pooling=pooler,
classifier=classifier,
act_fn=act_fn_for_seq_cls(model_config),
),
"score": ClassifierPooler(
pooling=pooler,
classifier=classifier,
act_fn=act_fn_for_cross_encoder(model_config),
),
}
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/bert_with_rope.py
forward ¶
forward(
input_ids: Optional[Tensor],
positions: Tensor,
intermediate_tensors: Optional[
IntermediateTensors
] = None,
inputs_embeds: Optional[Tensor] = None,
) -> Tensor
Source code in vllm/model_executor/models/bert_with_rope.py
load_weights ¶
GteNewModel ¶
Bases: BertWithRope
Source code in vllm/model_executor/models/bert_with_rope.py
hf_to_vllm_mapper class-attribute
instance-attribute
¶
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
"new.": "",
"layer": "layers",
"attention.qkv_proj": "attn.qkv_proj",
"attention.o_proj": "attn.out_proj",
}
)
__init__ ¶
__init__(
*, vllm_config: VllmConfig, prefix: str = "", **kwargs
)
Source code in vllm/model_executor/models/bert_with_rope.py
ignore_unnecessary_layers ¶
load_weights ¶
split_up_gate_proj ¶
Source code in vllm/model_executor/models/bert_with_rope.py
JinaRobertaModel ¶
Bases: BertWithRope
Source code in vllm/model_executor/models/bert_with_rope.py
hf_to_vllm_mapper class-attribute
instance-attribute
¶
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
"emb_ln": "embeddings.LayerNorm",
"mixer.Wqkv": "attn.qkv_proj",
"mixer.out_proj": "attn.out_proj",
"norm1": "attn_ln",
"mlp.fc1.": "mlp.up_proj.",
"mlp.fc2": "mlp.down_proj",
"norm2": "mlp_ln",
}
)
jina_merge_lora_weights ¶
Source code in vllm/model_executor/models/bert_with_rope.py
load_weights ¶
NomicBertModel ¶
Bases: BertWithRope
Source code in vllm/model_executor/models/bert_with_rope.py
hf_to_vllm_mapper class-attribute
instance-attribute
¶
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
"emb_ln": "embeddings.LayerNorm",
"attn.Wqkv": "attn.qkv_proj",
"norm1": "attn_ln",
"mlp.fc1.": "mlp.up_proj.",
"mlp.fc11": "mlp.up_proj",
"mlp.fc12": "mlp.gate_proj",
"mlp.fc2": "mlp.down_proj",
"norm2": "mlp_ln",
"experts.mlp.": "",
"experts.": "",
"router.layer": "router",
}
)
NomicMoE ¶
Bases: Module
Source code in vllm/model_executor/models/bert_with_rope.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
|
w1 instance-attribute
¶
w1 = Parameter(
empty(
num_total_experts,
intermediate_size,
hidden_size,
device=device_type,
dtype=params_dtype,
)
)
w2 instance-attribute
¶
w2 = Parameter(
empty(
num_total_experts,
hidden_size,
intermediate_size,
device=device_type,
dtype=params_dtype,
)
)
__init__ ¶
__init__(
num_experts: int,
top_k: int,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
params_dtype: Optional[dtype] = None,
tp_size: Optional[int] = None,
)
Source code in vllm/model_executor/models/bert_with_rope.py
forward ¶
Source code in vllm/model_executor/models/bert_with_rope.py
weight_loader ¶
Source code in vllm/model_executor/models/bert_with_rope.py
SnowflakeGteNewModel ¶
Bases: GteNewModel
Source code in vllm/model_executor/models/bert_with_rope.py
hf_to_vllm_mapper class-attribute
instance-attribute
¶
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_substr={
"layer": "layers",
"attention.qkv_proj": "attn.qkv_proj",
"attention.o_proj": "attn.out_proj",
}
)