vllm.model_executor.layers.activation
Custom activation functions.
_ACTIVATION_AND_MUL_REGISTRY module-attribute
¶
_ACTIVATION_AND_MUL_REGISTRY = LazyDict(
{
"gelu": lambda: GeluAndMul(),
"silu": lambda: SiluAndMul(),
"geglu": lambda: GeluAndMul(),
"swigluoai": lambda *args,
**kwargs: SwigluOAIAndMul(*args, **kwargs),
}
)
_ACTIVATION_REGISTRY module-attribute
¶
_ACTIVATION_REGISTRY = LazyDict(
{
"gelu": lambda: GELU(),
"gelu_fast": lambda: FastGELU(),
"gelu_new": lambda: NewGELU(),
"gelu_pytorch_tanh": lambda: GELU(
approximate="tanh"
),
"relu": lambda: ReLU(),
"relu2": lambda: ReLUSquaredActivation(),
"silu": lambda: SiLU(),
"quick_gelu": lambda: QuickGELU(),
"tanh": lambda: Tanh(),
"sigmoid": lambda: Sigmoid(),
"xielu": lambda: XIELU(),
}
)
FastGELU ¶
Bases: CustomOp
Source code in vllm/model_executor/layers/activation.py
FatreluAndMul ¶
Bases: CustomOp
An activation function for FATReLU.
The function computes x -> FATReLU(x[:d]) * x[d:] where d = x.shape[-1] // 2. This is used in openbmb/MiniCPM-S-1B-sft.
Shapes
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d) return: (num_tokens, d) or (batch_size, seq_len, d)
Source code in vllm/model_executor/layers/activation.py
GeluAndMul ¶
Bases: CustomOp
An activation function for GeGLU.
The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
Shapes
x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d) return: (batch_size, seq_len, d) or (num_tokens, d)
Source code in vllm/model_executor/layers/activation.py
__init__ ¶
__init__(approximate: str = 'none')
Source code in vllm/model_executor/layers/activation.py
forward_cuda ¶
forward_native ¶
PyTorch-native implementation equivalent to forward().
forward_xpu ¶
GeluAndMulSparse ¶
Bases: CustomOp
An activation function for GeluAndMulSparse. This activation function is used in Gemma3n. It computes: up_proj = self.up_proj(x) gate_proj = self.gate_proj(x) gate_proj = self._gaussian_topk(gate_proj) # sparsity activations = self.act_fn(gate_proj) # gelu down_proj = self.down_proj(activations * up_proj) Shapes: x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d) return: (num_tokens, d) or (batch_size, seq_len, d)
Source code in vllm/model_executor/layers/activation.py
__init__ ¶
Source code in vllm/model_executor/layers/activation.py
_gaussian_topk ¶
Get % sparse percentile of the Gaussian distribution.
Source code in vllm/model_executor/layers/activation.py
forward_cuda ¶
forward_native ¶
PyTorch-native implementation equivalent to forward().
Source code in vllm/model_executor/layers/activation.py
MulAndSilu ¶
Bases: CustomOp
An activation function for SwiGLU.
The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
Shapes
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d) return: (num_tokens, d) or (batch_size, seq_len, d)
Source code in vllm/model_executor/layers/activation.py
NewGELU ¶
Bases: CustomOp
Source code in vllm/model_executor/layers/activation.py
QuickGELU ¶
Bases: CustomOp
Source code in vllm/model_executor/layers/activation.py
ReLUSquaredActivation ¶
Bases: CustomOp
Applies the relu^2 activation introduced in https://arxiv.org/abs/2109.08668v2
Source code in vllm/model_executor/layers/activation.py
ScaledActivation ¶
Bases: Module
An activation function with post-scale parameters.
This is used for some quantization methods like AWQ.
Source code in vllm/model_executor/layers/activation.py
scales instance-attribute
¶
scales = Parameter(
empty(
intermediate_size_per_partition, dtype=params_dtype
)
)
__init__ ¶
__init__(
act_module: Module,
intermediate_size: int,
input_is_parallel: bool = True,
params_dtype: Optional[dtype] = None,
)
Source code in vllm/model_executor/layers/activation.py
forward ¶
weight_loader ¶
weight_loader(param: Parameter, loaded_weight: Tensor)
Source code in vllm/model_executor/layers/activation.py
SiluAndMul ¶
Bases: CustomOp
An activation function for SwiGLU.
The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
Shapes
x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d) return: (num_tokens, d) or (batch_size, seq_len, d)
Source code in vllm/model_executor/layers/activation.py
SwigluOAIAndMul ¶
Bases: CustomOp
Source code in vllm/model_executor/layers/activation.py
__init__ ¶
forward_cuda ¶
Source code in vllm/model_executor/layers/activation.py
forward_native ¶
PyTorch-native implementation equivalent to forward().
Source code in vllm/model_executor/layers/activation.py
XIELU ¶
Bases: CustomOp
Applies the xIELU activation function introduced in https://arxiv.org/abs/2411.13010 If the user has installed the nickjbrowning/XIELU, we import xIELU CUDA Otherwise, we emit a single warning and use xIELU Python
Source code in vllm/model_executor/layers/activation.py
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
|
__init__ ¶
__init__(
alpha_p_init: float = 0.8,
alpha_n_init: float = 0.8,
beta: float = 0.5,
eps: float = -1e-06,
dtype: dtype = bfloat16,
with_vector_loads: bool = False,
)
Source code in vllm/model_executor/layers/activation.py
_xielu_cuda ¶
Firewall function to prevent torch.compile from seeing .item()
Source code in vllm/model_executor/layers/activation.py
_xielu_python ¶
Source code in vllm/model_executor/layers/activation.py
forward ¶
Source code in vllm/model_executor/layers/activation.py
get_act_and_mul_fn ¶
Get an activation-and-mul (i.e. SiluAndMul) function by name.
Source code in vllm/model_executor/layers/activation.py
get_act_fn ¶
Get an activation function by name.